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The probabilistic formula provided by Hauptman and Giacovazzo for estimating

three-phase invariants when anomalous scatterers are present is revisited. Its

main defects are: (a) it is absolutely resistant to any attempt at interpreting it in

terms of parameters accessible via the experiment; (b) its calculation is time

consuming and requires computing resources. A distribution based on

interpretable estimates of the parameters is proposed. The role of the old and

the new expressions in the single-wavelength anomalous diffraction (SAD)

techniques is discussed, and compared with the role of analogous formulas

estimating triplet invariants from isomorphous diffraction data.

1. Symbols and notation

f � f 0 � if 00 atomic scattering factor: f 0 is its real part and may

include an anomalous real effect, f 00 is its imaginary part. The

thermal factor is included.

Ep � Rp exp�i'p� = normalized structure factor of the native

protein.

Ed � Rd exp�i'd� = normalized structure factor of the deriv-

ative.

�p � 'ph � 'pk ÿ 'pk�h.

N, a, na: number of non-hydrogen atoms in the protein unit

cell, number of anomalous scatterers, number of non-anom-

alous scatterers respectively.

Ea � Ra exp�i'a� = normalized structure factor of the anom-

alous scatterer substructure.

I0 modi®ed Bessel function of order zero.

�H �
P

j f 2
j , where the summation is extended to the heavy

atoms.

��i�N; ��i�H; ��i�a �
P

j Zi
j, where the summation is extended to

all the protein atoms, to the heavy atoms only, to the anom-

alous scatterers, respectively (Zi
j is the atomic number of the

jth atom).

h1 � h; h2 � k; h3 � h� k.

�i �
PN

j�1 �f 02j �hi� � f 002j �.
�ai �

Pa
j�1 �f 02j �hi� � f 002j �.

�0ai �
Pa

j�1 f 02j �hi�.
�m

ai �
Pa

j�1 �f 0j �hi�f 00j �.
�00a �

Pa
j�1 f 002j .

N �
PN

j�1 f 0j �h1�f 0j �h2�f 0j �h3�=��1�2�3�1=2.

a �
Pa

j�1 f 0j �h1�f 0j �h2�f 0j �h3�=��1�2�3�1=2.

" � P
1

P
2

P
3

ÿ �� P
1na

P
2na

P
3na

ÿ �
.

2. Introduction

The probabilistic theory of the three-phase invariants for

isomorphous pairs was initiated by Hauptman (1982a). He

studied the distribution

P�Eph;Epk;Eph�k;Edh;Edk;Edh�k�;
from which the conditional probability

P��pjRph;Rpk;Rph�k;Rdh;Rdk;Rdh�k�
� �2�I0�G��ÿ1 exp�G cos �p� �1�

was derived. Equation (1) is a von Mises distribution: �p is

expected close to 0 or � according to whether G is positive or

negative.

The algebraic expression of G is rather complicated (here

not reported for brevity), and does not allow any easy inter-

pretation in terms of parameters accessible via the diffraction

experiment. The matter was revisited by Giacovazzo et al.

(1988) who obtained for G the following simple expression:

G � 2��3=�3=2
2 �pRphRpkRph�k � 2��3=�3=2

2 �H�h�k�h�k; �2�
where

� � �Fd ÿ Fp�=�1=2
H :

The �s are isomorphous differences normalized with respect

to the heavy-atom structure.

Expression (1) has been extensively tested by Furey et al.

(1990), equation (2) has been the basis of a series of papers

that describe how the protein phases may be estimated

without any previous knowledge of the heavy-atom

substructure (see Giacovazzo et al., 1996, and literature

quoted therein).
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Estimates of the three-phase invariants when anomalous

scatterers are present have been provided by Hauptman

(1982b) and independently by Giacovazzo (1983). In spite of

the quite different notation, the conclusive formulae provided

by the two authors coincide. Their main result was the deri-

vation of the joint probability distribution function

P�Eh;Ek;Eh�k;Eÿh;Eÿk;Eÿhÿk�
� P�R1;R2;R3;G1;G2;G3; '1; '2; '3;  1;  2;  3�; �3�

where Ri and Gi are normalized structure-factor moduli (e.g.

R � jFj=�1=2):

R1 � jEhj;
G1 � jEÿhj;
'1 � 'h;

 1 � 'ÿh;

R2 � jEkj;
G2 � jEÿkj;
'2 � 'k;

 2 � 'ÿk;

R3 � jEh�kj;
G3 � jEÿhÿkj;
'3 � 'h�k;

 3 � 'ÿhÿk:

From equation (3), eight conditional distributions were

derived:

P��ijRj;Gj; j � 1; 2; 3� � �2�I0�
i��ÿ1 exp�
i cos��i ÿ !i��;
�4�

for i = 1, . . . , 8, where

�1 �  1 �  2 � '3;

�3 �  1 ÿ '2 � '3;

�5 �  1 �  2 ÿ  3;

�7 �  1 ÿ '2 ÿ  3;

�2 � '1 ÿ  2 ÿ '3;

�4 � '1 � '2 ÿ '3;

�6 � '1 ÿ  2 �  3;

�8 � '1 � '2 �  3:

Equations (4) are von Mises distributions: they are unimodal,

centred on !i, and 
i is the concentration parameter. As for

the parameter G in (1), the algebraic expressions of the 
i's

are absolutely impermeable to a straightforward interpreta-

tion in terms of parameters directly connected to the diffrac-

tion experiment.

In this paper, we intend to: (a) provide a probabilistic

distribution for the triplet estimation immediately inter-

pretable in terms of experimental parameters; (b) compare the

ef®ciency of the new against the original expression; (c)

describe the role of (4) in the direct procedures for phasing the

proteins. In particular, we will show that (4) is expected to

have a minor practical role compared with (1).

3. The simplified estimation of the parameters

3.1. Theoretical aspects

The estimates provided by (4), for i = 1, . . . , 8, are strictly

correlated with each other: thus only one of them is necessary

for practical applications. We will focus our attention on the

conditional distribution of �4; we will simplify the notation by

denoting �4, 
4, !4, #4, 4 by �, 
, !, #, , respectively.

Accordingly, we rewrite the corresponding distribution as

P��jRj;Gj; j � 1; 2; 3� � �2�I0�
��ÿ1 exp�
 cos��ÿ !��;
�5�

where


 � �#2 � 2�1=2; �6�
# � R1R2R3A4 cos �4 �G1R2R3A3D1 cos��3 ÿ �01�
� R1G2R3A2D2 cos��2 � �02� � R1R2G3A1D3 cos��1 ÿ �03�
� R1G2G3A3D2D3 cos��3 � �02 ÿ �03�
�G1R2G3A2D1D3 cos��2 ÿ �01 � �03�
�G1G2R3A1D1D2 cos��1 ÿ �01 ÿ �02�
�G1G2G3A4D1D2D3 cos��4 ÿ �01 ÿ �02 � �03�; �7�

 � R1R2R3A4 sin �4 ÿG1R2R3A3D1 sin��3 ÿ �01�
� R1G2R3A2D2 sin��2 � �02� � R1R2G3A1D3 sin��1 ÿ �03�
� R1G2G3A3D2D3 sin��3 � �02 ÿ �03�
ÿG1R2G3A2D1D3 sin��2 ÿ �01 � �03�
ÿG1G2R3A1D1D2 sin��1 ÿ �01 ÿ �02�
ÿG1G2G3A4D1D2D3 sin��4 ÿ �01 ÿ �02 � �03�; �8�

! � tanÿ1�=!�:

For user usefulness, we collect in Appendix A the algebraic

expressions of the various parameters that de®ne the values of

# and  and observe that:

(a) the terms A0i and �0i, for i = 1, 2, 3, can be expressed in

terms of the coef®cients cji, for j = 1, 2 and i = 1, 2, 3. In their

turn, the cji's are functions of the scattering factors.

(b) The coef®cients Ai and �i, for i = 1, . . . , 4, can be

expressed in terms of the parameters Ti, Bi, i = 1, . . . , 4. In

their turn, the Ti and Bi variables are functions of the quan-

tities Si, for i = 1, . . . , 8, which depend on the values assumed

by the variables Zi, for i = 1, . . . , 8. The latter depend on the

variables ti, bi, i = 1, . . . , 4, which are themselves complicated

expressions depending on the chemical composition and on

the used wavelength.

It is therefore not possible to deduce in a simple way, from

the relationships (7) and (8), the expected value ! of the

triplet invariant � and the reliability of the estimate.

The algebraic analysis of the various parameters allowed us

to introduce a set of approximations that, for user usefulness,

are collected in Appendix B. Such approximations enabled us

to provide interpretable estimations of the parameters. Our

®nal expression for the conditional probability distribution of

the triplet phase invariants is the following:

P��jRj;Gj; j � 1; 2; 3� � �2�I0�
s��ÿ1 exp�
s cos�� ÿ !s��;
�9�

where

Table 1
Numerical comparison between the parameters s, #s, 
s, !s in the
distribution (9) and  , #, 
, ! in the distribution (4), for some selected
triplets of TTG.

�; s� �#; #s� �
;
s� �!; !s�
Triplet 1 (ÿ1.96, ÿ2.28) (ÿ1.76, ÿ1.98) (2.63, 3.02) (�48�, �49�)
Triplet 2 (ÿ3.44, ÿ3.53) (ÿ1.21, ÿ1.21) (3.65, 3.73) (�71�, �71�)
Triplet 3 (�1.36, �1.33) (ÿ0.06, ÿ0.07) (1.36, 1.33) (ÿ87�, ÿ87�)
Triplet 4 (�1.66, �1.61) (ÿ0.30, ÿ0.30) (1.69, 1.64) (ÿ78�, ÿ79�)
Triplet 5 (�1.21, �1.11) (ÿ0.46, ÿ0.47) (1.29, 1.15) (ÿ69�, ÿ67�)



!s � tanÿ1�s=#s�; �10�
s � ÿ2��3=�

3=2
2 �a�1�2�3m; �11�

#s � 2��3=�
3=2
2 �N

�
R1R2R3 � 2R3d1d2 1� 1

tan �1 tan �2

� �
� 2R2d1d3 1� 1

tan �1 tan �3

� �
� 2R1d2d3 1� 1

tan �2 tan �3

� �
� d1d2d3 1ÿ 1

tan �1 tan �2

� 1

tan �1 tan �3

� 1

tan �2 tan �3

� ��
;

�12�

s � �2

s � #2
s �1=2; �13�

!s, s, #s, 
s are simpler estimates of the parameters !, , #,


, respectively. !s is the estimated triplet invariant phase and


s is its reliability. We have used the following notation:

�1 � �ano1=�
1=2
a1 ; �2 � �ano2=�

1=2
a2 ; �3 � �ano3=�

1=2
a3 ;

�ano1 � jF�h1�j ÿ jF�ÿh1�j; �ano2 � jF�h2�j ÿ jF�ÿh2�j;
�ano3 � jF�h3�j ÿ jF�ÿh3�j;

m � Q3
i�1

���0ai�ai�1=2=�m
ai�

� ��
8; di � RiGi:

3.2. Analysis of the formula

Let us ®rst analyse the algebraic expressions of the par-

ameter s. If we have only one type of anomalous scatterer,

then

m � 1
8

Q3
i�1

f�af 02�hi�ajf �hi�j2�1=2=�af 0�hi�f 00�g

� 1
8

Q3
i�1

�jf �hi�j=f 00�

� Q3
i�1

1=�2 sin �i�

and

s � ÿ2��3=�
3=2
2 �a�01�02�03; �14�

where �0i � �i=�2 sin �i�. The factor �sin �i�ÿ1 takes into

account the larger signal provided by the anomalous scattering

at higher sin �=�. The factor m changes also with the wave-

length: it decreases when �f 0 becomes a larger negative

number and/or when f 00 increases.

Let us now analyse the term #: it is a term of order Nÿ1=2

(while s is of order aÿ1=2). If the differences di are quite

negligible with respect to Ri and to Gi, we can approximate #s

by the Cochran contribution:

#s � 2��3=�
3=2
2 �NR1R2R3:

Expressions (10)±(13) clarify the role of the parameters

accessible via the diffraction experiment. They were obtained

under the hypothesis that only one type of anomalous scat-

terer is present. However, the relative order of magnitude of

the Bi and Ti coef®cients is not changed if more types of

anomalous scatterers are in the unit cell. It may therefore be

expected that (10)±(13) also hold under less strict conditions.

It is worthwhile interpreting in the Argand plane the

coef®cients G in (2) and 
s in (9). In the case of the isomor-

phous derivative, we de®ne G as the sum of two real

components (see Fig. 1a), the ®rst always positive (say

v1 � 2��3=�
3=2
2 �pR1R2R3� and the second positive or negative,

and predominant (say v2 � ��3=�
3=2
2 �H�h�k�h�k�. According

to the relationships (10)±(13), Xs may be de®ned as a vector

(see Fig. 1b) having the real component #s de®ned by (12) and

the imaginary component coinciding with s as de®ned by

(11). 
s is the modulus of Xs.

The following observations can be made:

(a) The real component is often negligible with respect to

the imaginary component. Therefore the most reliable triplet

phases are expected to have values close to ��=2.

(b) Negative (positive) values of  should correspond to

triplet phases close to ÿ�=2 (+�=2).

(c) If the di's are negligible with respect to the Ri's and to

the Gi's then cos � is always expected to be positive.

(d) Our formulas (9)±(13) for SAD triplet invariants and

formula (2) for isomorphous data triplets present a quite

interesting similarity. The main difference between the two

formulas may be expressed as follows: large values of

j�h�k�h�kj in (2) characterize triplet phases close to zero or

�, large values of j�0h�0k�0h�kj characterize triplet phases close

to ��=2.

(e) The distribution (9) agrees well with the Karle (1984)

®rst rule: `if the sign of the product of the largest-magnitude

differences (�ano1, �ano2, �ano3) is the same as the sign of f 00,
the value of the average triplet invariant � is close to ÿ�=2

and, when the signs are opposite, the value is close to �=2'.

Formula (9) encompasses the Karle rule: indeed, it speci®es

the parameters de®ning the reliability of the � estimate and

the sign of cos �.

3.3. Numerical analysis

In order to compare the ef®ciency of the original distribu-

tion (5) with the effectiveness of the distribution (9), we have

selected two proteins:

(i) TTG (Walsh et al., 1999), space group C2221, a = 63.47,

b = 65.96, c = 75.03 AÊ , 145 residues, 3 Se in the asymmetric

unit, experimental data up to 2.28 AÊ resolution. Experimental

Acta Cryst. (2003). A59, 569±576 Carmelo Giacovazzo et al. � Estimation of three-phase invariants 571
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Figure 1
The concentration parameters G [see equation (2)] and 
s [see
equation (13)] are interpreted in the Argand plane. (a) v1 and v2 are
the two real components of G, where v1 � 2��3=�

3=2
2 �NR1R2R3 and

v2 � ��3=�
3=2
2 �H�h�k�h�k. (b) #s, as given by equation (12) is the real

component of 
s and s � ��3=�
3=2
2 �a�01�02�03 is the imaginary compo-

nent.
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data at four wavelengths are available for TTG, with the

following expected parameters:

�1 = 1.0781 AÊ , �f 01 � ÿ1:805, f 001 = 0.646,

�2 = 0.9793 AÊ , �f 02 � ÿ8:852, f 002 � 3:843,

�3 = 0.9791 AÊ , �f 03 � ÿ7:663, f 003 � 3:841,

�4 = 0.9465 AÊ , �f 04 � ÿ2:618, f 004 � 3:578.

(ii) CauFd (Dauter et al., 1997), space group P43212, a =

33.95, c = 74.82 AÊ , 55 residues, 8 Fe in the asymmetric unit,

experimental data up to 0.94 AÊ resolution. Experimental SAD

data are available, at � = 0.88 AÊ , with expected �f 0 = 0.26 and

f 00 = 1.25.

We ®rst checked the ef®ciency of the numerous approxi-

mations used in our mathematical approach. We show in Table

1 ®ve triplets of TTG, with different resolutions and various

parameter values, for which we compare the values of !s, s,

#s, 
s with the corresponding values of !,  , #, 
. The

approximations prove to be suf®ciently accurate for practical

use (see also the tests presented in Tables 2 and 3).

We have then estimated triplet phases from calculated data

by using �f 03 and f 003 for TTG, and the above de®ned �f 0 and f 00

values for CauFd. The results are shown in Table 2 (equivalent

results are obtained for the other wavelengths): they indicate

that (5) and (9) have equivalent ef®ciency. As a consequence,

(9) may be considered a quite good approximation of (5): thus

the ®rst aim of this paper has been attained.

A surprise came out when we applied equations (5) and (9)

to the corresponding experimental data (see Table 3). The

measurement errors make (5) and (9) unuseful in practice: all

triplets have reliability factors larger than 2.0 for TTG and

larger than 0.4 for CauFd, but the corresponding phase errors

are exceedingly high. We therefore decided to analyse the

quality of the information carried by (5) and (9) to guess about

their role in the practical phasing procedures.

4. The triplet invariant estimate when the anomalous
scatterers are located

Suppose that at a certain stage of the phasing process the

anomalous scatterer substructure is known. Then the struc-

ture-factor phases can be estimated, for example via distri-

butions like that of Giacovazzo, Ladisa & Siliqi (2002):

P�'�jR;G;E�a ;Eÿa � � �2�Io�X ��ÿ1 exp�X cos�'� ÿ #���;
�15�

where

E� � R exp�i'��; Eÿ � G exp�i'ÿ�;
E�a � Ra exp�i'�a �; Eÿa � Ga exp�i'ÿa �

are pseudo-normalized structure factors [normalized with

respect to the non-anomalous scatterer substructure; e.g.

E� � F�=�Pna�1=2] ,

tan#� � P=Q; �16�
P � 2�q�RRa sin '�a ÿ qÿGGa sin'ÿa �
� 2
�RÿG�

e
�Ra sin '�a �Ga sin 'ÿa �;

Q � 2�q�RRa cos '�a � qÿGGa cos 'ÿa �
� 2
�RÿG�

e
�Ra cos '�a ÿGa cos 'ÿa �;

X � �P2 �Q2�1=2; �17�
e � �hj��j2i � hj�ÿj2i�=Pna :

�� and �ÿ represent the cumulative errors arising from

different sources (i.e. the structural model constituted by the

located anomalous scatterers and errors in measurements).

Both P and Q have two contributors: the ®rst is a Sim-like

term (Sim, 1959, 1960), the second depends on the �ano

experimental measures. If the Sim contribution is neglected

(e.g. for big structures and/or for small values of Ra and Ga),

then

X � 4�anojF 00�a j=�j��j2 � j�ÿj2�;
#� � '00�a � sign��ano��=2;

�18�

where '00�a is the phase of

F 00�a �
Pa

j�1

f 00j exp�2�ih � rj�:

Let us now apply (15) to the calculated and experimental data

of TTG and CauFd. We use the same re¯ections employed in

Table 2
Calculated data.

TTG and CauFd triplet invariants are found among the 920 and 860 re¯ections
with the largest |�0 | values, respectively; Ntr is the number of triplets with

 or 
s larger than a given threshold 
tr, hj�!0ji and hj�!0

s ji are the
corresponding phase errors [the ®rst obtained via (5) and the second via (9)].

Structure 
tr Ntr hj�!0ji Ntrs hj�!0
s ji

TTG 0.2 138183 66 128533 65
0.4 49136 60 43836 59
0.8 7051 51 6528 50
1.2 1479 45 1413 44
2.0 135 37 129 37

CauFd 0.2 18682 67 15187 67
0.4 1150 57 1089 59
0.8 44 51 39 52
1.2 5 27 5 24

Table 3
Observed data.

TTG and CauFd triplet invariants are found among the 920 and 860 re¯ections
with the largest experimental |�0| values; Ntr is the number of triplets with

 or 
s larger than a given threshold 
tr, hj�!0ji and hj�!0

s ji are the
corresponding phase errors [the ®rst obtained via (5) and the second via (9)].

Structure 
tr Ntr hj�!0ji Ntrs hj�!0
s ji

TTG 2.0 134335 83 133723 83
4.4 68469 81 67451 81
6.5 29737 79 29565 79

15.0 1727 69 1731 70
CauFd 0.4 56690 83 55698 84

1.2 6500 82 6250 84
2.0 797 84 813 86
4.4 27 107 26 108



Tables 2 and 3. The results are summarized in Table 4. The

overall phase error (|Er|�) is small even for experimental data:

the formula (15) is therefore useful for practical applications.

A question arises: can we identify the information lost by

(9) and exploited by (15)? To this aim, we verify how the

information on the anomalous-scatterer substructure modi®es

the triplet-invariant estimates. The necessary tool for

obtaining the new estimates is the knowledge of the condi-

tional distribution

P��jfRi;Gi;E�ai;Eÿai; i � 1; 2; 3g�: �19�
The distribution (19) may be derived via a mathematical

approach similar to that used by Giacovazzo, Siliqi & De Caro

(2002) to estimate triplet-phase invariants in the isomorphous-

replacement case when the heavy-atom substructure is known.

In particular, we will consider (19) as the combination of the

three independent distributions (15), where i = 1, 2, 3 refers to

h, k, h + k, respectively:

P��jfRi;Gi;E�ai;Eÿai; i � 1; 2; 3g� � expf�iXi cos�'�i ÿ #�i �g:
�20�

We obtain

P��jfRi;Gi;E�ai;Eÿai; i � 1; 2; 3g�
� �2�I0����ÿ1 exp�� cos��ÿ���; �21�

where

� � #�1 � #�2 ÿ #�3
and � is de®ned by

D1��� � D1�X1�D1�X2�D1�X3�; �22�
where D1�x� � I1�x�=I0�X�.

Equation (21) is the required expression: it should provide

improved estimates of the triplet invariants [with respect to

those given by (5) or by (9)]. The main behaviour of (21) may

be discovered by assuming that the anomalous scattering of

the protein is small with respect to the normal scattering.

Then, in accordance with equation (18),

Xi � 4�anoijF 00�ai j=�hj��i j2i � hj�ÿi j2i�; i � 1; 2; 3:

If the Xi's are relatively small (say <0.6), then D1(Xi) � Xi=2,

� � 2
j�ano1j

hj��1 j2i � hj�ÿ1 j2i
j�ano2j

hj��2 j2i � hj��ÿ2 �2ji
� j�ano3j
hj��3 j2i � hj��ÿ3 �2ji

jF 00a1F 00a2F 00a3j �23�

and

� � �00�a � �=2�sign��ano1� � sign��ano2� � sign��ano3��;
�24�

where

�00�a � '00�1 � '00�2 ÿ '00�3 :
If the number of anomalous scatterers is small, �00�a is

expected to be close to zero (it is just this expectation that

makes the triplet phases estimable in the absence of infor-

mation on the anomalous-scatterer substructure). In this case,

the phase estimates via (24) are nearly equivalent to those

provided by (9): the only difference is that the estimates (24)

are strengthened if the product jF 00a1F 00a2F 00a3j is large. The reader

can easily verify that, when �00�a � 0, (24) and (9) provide the

following estimates:

if �ano1 > 0;�ano2 > 0;�ano3 > 0

if �ano1 > 0;�ano2 > 0;�ano3 < 0

if �ano1 < 0;�ano2 < 0;�ano3 > 0

if �ano1 < 0;�ano2 < 0;�ano3 < 0

then !s � � � ÿ�=2

then !s � � � ��=2

then !s � � � ÿ�=2

then !s � � � ��=2:

It may be worthwhile stressing that, if �00�a is not close to

zero, the distributions (24) and (9) will provide different

estimates. Unfortunately, this is just the case when the triplets

are found among the re¯ections with the largest |�0| values

(the most reliable ones): indeed, a large |�0| difference does

not imply large R or G values. To give a numerical example,

the average values of j�00�a j for the triplets analysed in Table 1

are:

hj�00�a ji � 51� for TTG; hj�00�a ji � 72� for CauFd:

To verify how the triplet estimates improve when the

information on the anomalous substructure (and therefore on

�00�a ) is available, we have applied the distribution (21) to the

calculated and observed data of TTG and CauFd: we used the

same re¯ections employed in Tables 2 and 3.

For the calculated data, we obtained:

for TTG: 130306 triplets with � > 0.2 and average phase

error hj�!0ji � 45�;
for CauFd: 107435 triplets with � > 0.2 and hj�!0ji � 54�.
For the observed data, the outcome was the following:

for TTG: 128060 triplets with � > 0.4 and hj�!0ji � 78�;
for CauFd: 38713 triplets with � > 0.4 and hj�!0ji � 59�

(the quality of the CauFd experimental data is superior to that

of TTG).

The triplet estimates including the information on the

substructure are markedly better than estimates without it, but

worse than the estimates on the phases of the single re¯ec-

tions. Furthermore, the experimental errors deteriorate the

quality of the information (the errors on the single �ano sum in

the triplet expression).

5. Conclusions

The above results allow us to formulate the following

considerations:

(a) Distribution (5) is largely less informative than distri-

bution (15) (which requires and exploits information on the
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Table 4
Phase errors obtained via the probability distribution function (15), when
applied to the calculated and to the experimental data of TTG and
CauFd.

Structure Calc. data |Er|� Exp. data |Er|�

TTG 26 54
CauFd 33 38
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anomalous substructure) even in the absence of experimental

errors.

(b) The ef®ciency of (5) is strongly deteriorated by the

unavoidable experimental errors [formula (5) does not take

the errors into account and therefore the phase reliability is

strongly overestimated]. On the contrary, (15) treats the errors

as supplementary primitive variables and therefore is more

robust.

(c) Attempts at ®nding directly the protein phases from (5),

or equivalently from (9), are discouraged. This conclusion is in

contrast with the procedure recently suggested by Giacovazzo,

Ladisa & Siliqi (2002) for the isomorphous-replacement case

(the triplet-invariant estimates are ®rst used to evaluate a

subset of protein phases, from which the heavy-atom

substructure may be routinely identi®ed).

(d) The additional reason for the inef®ciency of (5) is the

fact that it assumes that �00�a is close to zero. The practice of

introducing Se atoms into a protein as selenomethionines

makes frequent the cases in which a > 20 (cases occur for

which a > 100). In all these cases, the �00�a values will be

signi®cantly different from zero even if jE�aij, for i = 1, 2, 3, are

large.

All the above considerations allow us to predict that

equations like (5), or equivalently (9), are expected to have a

marginal role in SAD procedures.

APPENDIX A

We collect in this Appendix the algebraic expressions of the

parameters de®ning the values of the variables 
 and ! in

equation (5).

c1i �
PN
j�1

�f 02j �hi� ÿ f 002j �=�i; c2i � 2
PN
j�1

�f 0j �hi�f 00j �=�i;

ci � �1ÿ �c2
1i � c2

2i��2; i � 1; 2; 3;

sin �0i � c2i=�c2
1i � c2

2i�1=2; cos �0i � c1i=�c2
1i � c2

2i�1=2;

A0i � 2��c2
1i � c2

2i�=ci�1=2; i � 1; 2; 3;

t1 � 1=��1�2�3�1=2
PN
j�1

ff 0j �h1�f 0j �h2�f 0j �h3�

ÿ f 002j �f 0j �h1� � f 0j �h2� � f 0j �h3��g;

t2 � 1=��1�2�3�1=2
PN
j�1

ff 0j �h1�f 0j �h2�f 0j �h3�

� f 002j �ÿf 0j �h1� � f 0j �h2� � f 0j �h3��g;

t3 � 1=��1�2�3�1=2
PN
j�1

ff 0j �h1�f 0j �h2�f 0j �h3�

� f 002j �f 0j �h1� ÿ f 0j �h2� � f 0j �h3��g;

t4 � 1=��1�2�3�1=2
PN
j�1

ff 0j �h1�f 0j �h2�f 0j �h3�

� f 002j �f 0j �h1� � f 0j �h2� ÿ f 0j �h3��g;

b1 � 1=��1�2�3�1=2
PN
j�1

ff 00j �f 0j �h1�f 0j �h2� � f 0j �h1�f 0j �h3�

� f 0j �h2�f 0j �h3�� ÿ f 003j g;

b2 � 1=��1�2�3�1=2
PN
j�1

ff 00j �f 0j �h1�f 0j �h2� � f 0j �h1�f 0j �h3�

ÿ f 0j �h2�f 0j �h3�� � f 003j g;

b3 � 1=��1�2�3�1=2
PN
j�1

ff 00j �f 0j �h1�f 0j �h2� ÿ f 0j �h1�f 0j �h3�

� f 0j �h2�f 0j �h3�� � f 003j g;

b4 � 1=��1�2�3�1=2
PN
j�1

ff 00j �ÿf 0j �h1�f 0j �h2� � f 0j �h1�f 0j �h3�

� f 0j �h2�f 0j �h3�� � f 003j g;

Z1 � �t4 ÿ c11t3 ÿ c21b3�=�c1�1=2;

Z2 � �t1 ÿ c11t2 � c21b2�=�c1�1=2;

Z3 � �t3 ÿ c11t4 ÿ c21b4�=�c1�1=2;

Z4 � �t2 ÿ c11t1 ÿ c21b1�=�c1�1=2;

Z5 � �b4 � c11b3 ÿ c21t3�=�c1�1=2;

Z6 � �b1 ÿ c11b2 ÿ c21t2�=�c1�1=2;

Z7 � �b3 � c11b4 ÿ c21t4�=�c1�1=2;

Z8 � �ÿb2 � c11b1 ÿ c21t1�=�c1�1=2;

S1 � �ÿZ2 � c12Z3 ÿ c22Z7�=�c2�1=2;

S2 � �ÿZ1 � c12Z4 ÿ c22Z8�=�c2�1=2;

S3 � �ÿZ6 � c12Z7 � c22Z3�=�c2�1=2;

S4 � �ÿZ5 � c12Z8 � c22Z4�=�c2�1=2;

S5 � �ÿZ4 � c12Z1 � c22Z5�=�c2�1=2;

S6 � �ÿZ3 � c12Z2 � c22Z6�=�c2�1=2;

S7 � �ÿZ8 � c12Z5 ÿ c22Z1�=�c2�1=2;

S8 � �ÿZ7 � c12Z6 ÿ c22Z2�=�c2�1=2;

T1 � 2�ÿS1 � c13S2 ÿ c23S4�=�c3�1=2;

T2 � 2�ÿS5 � c13S6 � c23S8�=�c3�1=2;

T3 � 2�ÿS6 � c13S5 ÿ c23S7�=�c3�1=2;

T4 � 2�ÿS2 � c13S1 � c23S3�=�c3�1=2;

B1 � 2�ÿS3 � c13S4 � c23S2�=�c3�1=2;

B2 � 2�ÿS7 � c13S8 ÿ c23S6�=�c3�1=2;

B3 � 2�ÿS8 � c13S7 � c23S5�=�c3�1=2;

B4 � 2�ÿS4 � c13S3 ÿ c23S1�=�c3�1=2;

Ai � �T2
i � B2

i �1=2; sin �i � Bi=�T2
i � B2

i �1=2;

cos �i � Ti=�T2
i � B2

i �1=2; i � 1; 2; 3; 4:



APPENDIX B

We collect in this Appendix the basic approximations aiming

at providing simple estimates of the parameters de®ning the

distribution (5).

We ®rst simplify the parameters #,  in (5) as follows:

# � R1R2R3T4 �G1R2R3T3 � R1G2R3T2 � R1R2G3T1

� R1G2G3T3 �G1R2G3T2 �G1G2R3T1 �G1G2G3T4

�25�
 � R1R2R3B4 ÿG1R2R3B3 � R1G2R3B2 � R1R2G3B1

� R1G2G3B3 ÿG1R2G3B2 ÿG1G2R3B1 ÿG1G2G3B4

�26�
! � tanÿ1�=#�:
To obtain (25) and (26):

(a) We have assumed �0i � 0 for i � 1; 2; 3. In practice,

these angles are very small, as one can directly assess from the

de®nitions given in Appendix A. Indeed, c2i � c1i.

(b) We have assumed Di � 1 for i � 1; 2; 3, where

D1 � D�A01R1G1�; D2 � D�A02R2G2�; D3 � D�A03R3G3�
and

D�x� � I1�x�=I0�x�:
Accordingly, we focus our interest on the triplet invariants

with large values of the products RiGi, for i = 1, 2, 3. They

belong to the subset potentially most useful to derive structure

information via electron-density maps.

(c) We have replaced the variables �Ai; �i� of the original

formula by the variables �Ti;Bi�, in accordance with Appendix

A.

To simplify further the relationships (25)±(26), we note that,

according to the de®nitions given in Appendix A,

�1ÿ c1i��i � 2�00a; c2i�i � 2�m
ai �i � 1; 2; 3�;

from which

�1ÿ c1i�=c2i � �00a=�
m
ai �i � 1; 2; 3�:

If we assume that only one type of anomalous scatterer is

present, then

�1ÿ c1i�=c2i � f 00=f 0�hi� � tan �i; for i � 1; 2; 3;

where �i is, in the Argand plane, the angle of the scattering

factor of anomalous scatterer [i.e. f � jf j exp�i��]. Note that �
varies with the resolution.

We can now rewrite the variables bi and ti, i = 1, . . . , 4,

de®ned in Appendix A, as follows:

t1 � N ÿ a

1ÿ c12

c22

1ÿ c13

c23

� 1ÿ c11

c21

1ÿ c13

c23

� 1ÿ c12

c22

1ÿ c11

c21

� �
;

t2 � N � a ÿ
1ÿ c12

c22

1ÿ c13

c23

� 1ÿ c11

c21

1ÿ c13

c23

� 1ÿ c12

c22

1ÿ c11

c21

� �
;

t3 � N � a

1ÿ c12

c22

1ÿ c13

c23

ÿ 1ÿ c11

c21

1ÿ c13

c23

� 1ÿ c12

c22

1ÿ c11

c21

� �
;

t4 � N � a

1ÿ c12

c22

1ÿ c13

c23

� 1ÿ c11

c21

1ÿ c13

c23

ÿ 1ÿ c12

c22

1ÿ c11

c21

� �
;

b1 � a

1ÿ c13

c23

� 1ÿ c12

c22

� 1ÿ c11

c21

ÿ 1ÿ c13

c23

1ÿ c12

c22

1ÿ c11

c21

� �
;

b2 � a

1ÿ c13

c23

� 1ÿ c12

c22

ÿ 1ÿ c11

c21

� 1ÿ c13

c23

1ÿ c12

c22

1ÿ c11

c21

� �
;

b3 � a

1ÿ c13

c23

ÿ 1ÿ c12

c22

� 1ÿ c11

c21

� 1ÿ c13

c23

1ÿ c12

c22

1ÿ c11

c21

� �
;

b4 � a ÿ
1ÿ c13

c23

� 1ÿ c12

c22

� 1ÿ c11

c21

� 1ÿ c13

c23

1ÿ c12

c22

1ÿ c11

c21

� �
:

We stress that the formulas written above exactly hold in the

limit of a single type of anomalous scatterer.

If we rewrite the expressions (de®ned in Appendix A) of

the variables Zi and Si, i = 1, . . . , 8, and introduce them in the

algebraic de®nitions of the variables Bi and Ti, which ®x the

values of # and  in (25) and (26), we obtain:

B1 � ÿ
2

c21c22c23

a �
"

4

c21

1ÿ c11

ÿ c22

1ÿ c12

ÿ c23

1ÿ c13

ÿ c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
a

ÿ "
4

c21

1ÿ c11

� c22

1ÿ c12

� c23

1ÿ c13

ÿ c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
N;

B2 � ÿ
2

c21c22c23

a �
"

4

c21

1ÿ c11

ÿ 3c22

1ÿ c12

ÿ 3c23

1ÿ c13

ÿ c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
a

ÿ "
4

c21

1ÿ c11

ÿ c22

1ÿ c12

ÿ c23

1ÿ c13

ÿ c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
N;

B3 �
2

c21c22c23

a �
"

4

c21

1ÿ c11

� c22

1ÿ c12

� 3c23

1ÿ c13

� c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
a

ÿ "
4

c21

1ÿ c11

ÿ c22

1ÿ c12

� c23

1ÿ c13

� c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
N;

B4 �
2

c21c22c23

a �
"

4

c21

1ÿ c11

� 3c22

1ÿ c12

� c23

1ÿ c13

� c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
a

ÿ "
4

c21

1ÿ c11

� c22

1ÿ c12

ÿ c23

1ÿ c13

� c21

1ÿ c11

c22

1ÿ c12

c23

1ÿ c13

� �
N;

T1 �
"

4
�N ÿ a��1� P3�; T2 �

"

4
�N ÿ a��1� P2�;

T3 �
"

4
�N ÿ a��1� P1�; T4 �

"

4
�N ÿ a��1� P4�;

where

P1 �
c21

1ÿ c11

c22

1ÿ c12

ÿ c21

1ÿ c11

c23

1ÿ c13

� c22

1ÿ c12

c23

1ÿ c13

;

P2 �
c21

1ÿ c11

c22

1ÿ c12

� c21

1ÿ c11

c23

1ÿ c13

ÿ c22

1ÿ c12

c23

1ÿ c13

;

P3 � ÿ
c21

1ÿ c11

c22

1ÿ c12

ÿ c21

1ÿ c11

c23

1ÿ c13

ÿ c22

1ÿ c12

c23

1ÿ c13

;

P4 � ÿ
c21

1ÿ c11

c22

1ÿ c12

� c21

1ÿ c11

c23

1ÿ c13

� c22

1ÿ c12

c23

1ÿ c13

:

Let us analyse the order of magnitude of the three terms

contributing to the Bi's. We observe:

(a) c2i is of order a=N;

(b) although both c2i and �1ÿ c1i� are small quantities, their

ratio is ®nite and of order 1;

(c) " is close to unity;

(d) N is of order Nÿ1=2 and a is of order a=N3=2.

Accordingly, the ®rst term in Bi is of order N3=2=a2, usually a

large number. The second and third terms are of order a=N3=2

and Nÿ1=2, respectively, and therefore are both negligible with

respect to the ®rst one.
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Accordingly, the following relationship can be established:

B1 � B2 � ÿB3 � B4 � ÿ2a=�c21c22c23�: �27�
Putting (27) into (26) and renormalizing R and G with respect

to the anomalous-scatterers structure gives

 � ÿ2��3=�
3=2
2 �a�1�2�3m: �28�

Let us now analyse the terms Ti. We neglect a with respect to

N and, assuming " � 1, we have

"

4
�N ÿ a� � 1

4��3=�
3=2
2 �N:

Accordingly, # becomes

# � 1=4��3=�
3=2
2 �N�u� v�;

where

u � R1R2R3 �G1R2R3 � R1G2R3 � R1R2G3 � R1G2G3

�G1R2G3 �G1G2R3 �G1G2G3;

v � �R1R2R3 �G1G2G3�P4 � �G1R2R3 � R1G2G3�P1

� �R1G2R3 �G1R2G3�P2 � �R1R2G3 �G1G2R3�P3:

�29�
If the Ri's and the Gi's are not suf®ciently large, the differ-

ences di � Ri ÿGi may signi®cantly contribute to de®ne the

value of #. Then,

# � 1=4��3=�
3=2
2 �Nf8R1R2R3 � 4�d1R2R3 � R1d2R3 � R1R2d3�

� R1d2d3�2ÿ P2 ÿ P3� � d1R2d3�2ÿ P1 ÿ P3�
� d1d2R3�2ÿ P2 ÿ P3� � d1d2d3�1� P4�g

� 2��3=�
3=2
2 �N

�
R1R2R3 � 2R3d1d2 1� 1

tan �1 tan �2

� �
� 2R2d1d3 1� 1

tan �1 tan �3

� �
� 2R1d2d3 1� 1

tan �2 tan �3

� �
� d1d2d3 1ÿ 1

tan �1 tan �2

� 1

tan �1 tan �3

� 1

tan �2 tan �3

� ��
:

�30�

As for , the factors �sin �i�ÿ1 take into account the larger

signal provided by the anomalous scattering at higher sin �=�.
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